Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate

Author:

Jovanovic Gordana12ORCID,Perisic Mirjana12ORCID,Bacanin Nebojsa2ORCID,Zivkovic Miodrag2ORCID,Stanisic Svetlana2ORCID,Strumberger Ivana2ORCID,Alimpic Filip1ORCID,Stojic Andreja12ORCID

Affiliation:

1. Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia

2. Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia

Abstract

Polycyclic aromatic hydrocarbons (PAHs) refer to a group of several hundred compounds, among which 16 are identified as priority pollutants, due to their adverse health effects, frequency of occurrence, and potential for human exposure. This study is focused on benzo(a)pyrene, being considered an indicator of exposure to a PAH carcinogenic mixture. For this purpose, we have applied the XGBoost model to a two-year database of pollutant concentrations and meteorological parameters, with the aim to identify the factors which were mostly associated with the observed benzo(a)pyrene concentrations and to describe types of environments that supported the interactions between benzo(a)pyrene and other polluting species. The pollutant data were collected at the energy industry center in Serbia, in the vicinity of coal mining areas and power stations, where the observed benzo(a)pyrene maximum concentration for a study period reached 43.7 ngm−3. The metaheuristics algorithm has been used to optimize the XGBoost hyperparameters, and the results have been compared to the results of XGBoost models tuned by eight other cutting-edge metaheuristics algorithms. The best-produced model was later on interpreted by applying Shapley Additive exPlanations (SHAP). As indicated by mean absolute SHAP values, the temperature at the surface, arsenic, PM10, and total nitrogen oxide (NOx) concentrations appear to be the major factors affecting benzo(a)pyrene concentrations and its environmental fate.

Funder

Institute of Physics Belgrade

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3