Author:
Aldawsari Hibah M.,Singh Sima
Abstract
Cisplatin is one of the most leading potent chemotherapy drugs prescribed for the treatment of most solid tumors. However, the induction of toxicities and the development of resistance restricts its applications. Efforts are made in the proposed study to control the delivery of cisplatin to tumor sites by incorporating it into solid lipid nanoparticle (SLNs) drug carriers. By considering this fact, in the current research work, a single-step, one-pot, microwave-assisted technology was used to produce cisplatin-loaded SLNs. The shape of the SLNs was observed to be spherical, with a uniform size distribution of 74.85 nm, polydispersity index (PDI) of 0.311, and zeta potential of −20.8 mV. The percentage of encapsulation efficiency was found to be 71.85%. In vitro drug release study was calculated to be 80% in 24 h. The formulation in blood was found to be safe; a study of hemolysis confirmed this. Breast cancer cell line MCF-7 was used to test cytotoxicity and cellular interaction of cisplatin-loaded SLNs with an IC50 value of 6.51 ± 0.39 μg/mL. Overall, the results of our findings show that the approach of SLNs-based, cisplatin-based, drug delivery has led to increased sustainability in breast cancer therapy with superior biocompatibility.
Funder
King Abdulaziz University
Subject
General Materials Science,General Chemical Engineering
Reference38 articles.
1. Global Cancer in Women: Cancer Control Priorities
2. Cancer Statistics for Hispanics/Latinos, 2018
3. Breast cancer;Wilson,2002
4. World Cancer Research Fund Diet, nutrition, physical activity and breast cancer;Contin. Updat. Proj. Expert Rep.,2018
5. Gene expression profiling in breast cancer;Arango;Am. J. Transl. Res.,2013
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献