Characterizing the Spatial Variations of Forest Sunlit and Shaded Components Using Discrete Aerial Lidar

Author:

Wang Xiaofei,Zheng Guang,Yun Zengxin,Xu Zhaoshang,Moskal L. MonikaORCID,Tian Qingjiu

Abstract

Forest three-dimensional (3-D) structure, in the vertical dimension, consists of at least two components, including overstory and a forest background matrix (i.e., shrubs, grass, and bare earth). Quantitatively characterizing the proportions of forest sunlit (i.e., sunlit overstory and forest background) and shaded (i.e., shaded overstory and forest background) components is a crucial step in simulating the spatial variations of bidirectional reflectance distribution function (BRDF) of a forest canopy. By developing a Voxel-based sorest sunlit and shaded (VFSS) approach driven by aerial laser scanning data (ALS), we investigated the spatial variations of the forest sunlit and shaded components in a heterogeneous urban forest park (Washington Park Arboretum) with abundant tree species and a homogeneous natural forest area (Panther Creek). Meanwhile, we validated the forest canopy directional reflectance at both solar principal and perpendicular planes at the plot level. Moreover, we explored the effects of ALS data characteristics and forest stand conditions on the estimation accuracy of forest sunlit and shaded components. Our results show that (1) ALS data effectively stratify overstory and forest background with the accuracy decreasing from 87% to 65% as forest densities increase; (2) the root mean square errors (RMSEs) between the modeled- and ALS-based proportions of forest sunlit and shaded components range from 5.8% to 11.1% affected by forest densities; and (3) the scan angles and flight directions have apparent effects on the estimation accuracy of forest sunlit and shaded components. This work provides a solid foundation to investigate the spatial variations of directional forest canopy reflectance with a high spatial resolution of 1 m.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3