DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data

Author:

Bao Hanqing,Ming DongpingORCID,Guo Ya,Zhang Kui,Zhou Keqi,Du Shigao

Abstract

The urban functional zone, as a special fundamental unit of the city, helps to understand the complex interaction between human space activities and environmental changes. Based on the recognition of physical and social semantics of buildings, combining remote sensing data and social sensing data is an effective way to quickly and accurately comprehend urban functional zone patterns. From the object level, this paper proposes a novel object-wise recognition strategy based on very high spatial resolution images (VHSRI) and social sensing data. First, buildings are extracted according to the physical semantics of objects; second, remote sensing and point of interest (POI) data are combined to comprehend the spatial distribution and functional semantics in the social function context; finally, urban functional zones are recognized and determined by building with physical and social functional semantics. When it comes to building geometrical information extraction, this paper, given the importance of building boundary information, introduces the deeper edge feature map (DEFM) into the segmentation and classification, and improves the result of building boundary recognition. Given the difficulty in understanding deeper semantics and spatial information and the limitation of traditional convolutional neural network (CNN) models in feature extraction, we propose the Deeper-Feature Convolutional Neural Network (DFCNN), which is able to extract more and deeper features for building semantic recognition. Experimental results conducted on a Google Earth image of Shenzhen City show that the proposed method and model are able to effectively, quickly, and accurately recognize urban functional zones by combining building physical semantics and social functional semantics, and are able to ensure the accuracy of urban functional zone recognition.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3