PHCNet: Pyramid Hierarchical-Convolution-Based U-Net for Crack Detection with Mixed Global Attention Module and Edge Feature Extractor

Author:

Zhang Xiaohu1,Huang Haifeng1

Affiliation:

1. School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Crack detection plays a vital role in concrete surface maintenance. Deep-learning-based methods have achieved state-of-the-art results. However, these methods have some drawbacks. Firstly, a single-sized convolutional kernel in crack image segmentation tasks may result in feature information loss for small cracks. Secondly, only using linear interpolation or up-sampling to restore high-resolution features does not restore global information. Thirdly, these models are limited to learning edge features, causing edge feature information loss. Finally, various stains interfere with crack feature extraction. To solve these problems, a pyramid hierarchical convolution module (PHCM) is proposed by us to extract the features of cracks with different sizes. Furthermore, a mixed global attention module (MGAM) was used to fuse global feature information. Furthermore, an edge feature extractor module (EFEM) was designed by us to learn the edge features of cracks. In addition, a supplementary attention module (SAM) was used to resolv interference in stains in crack images. Finally, a pyramid hierarchical-convolution-based U-Net (PHCNet) with MGAM, EFEM, and SAM is proposed. The experimental results show that our PHCNet achieves accuracies of 0.929, 0.823, 0.989, and 0.801 on the Cracktree200, CRACK500, CFD, and OAD_CRACK datasets, respectively, which is higher than that of the traditional convolutional models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3