Discrimination of Healthy and Cancerous Colon Cells Based on FTIR Spectroscopy and Machine Learning Algorithms

Author:

Lasalvia Maria1ORCID,Gallo Crescenzio1ORCID,Capozzi Vito1ORCID,Perna Giuseppe1ORCID

Affiliation:

1. Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy

Abstract

Colorectal cancer was one of the most frequent causes of death due to cancer in 2020. Current diagnostic methods, based on colonoscopy and histological analysis of biopsy specimens, are partly dependent on the operator’s skills and expertise. In this study, we used Fourier transform infrared (FTIR) spectroscopy and different machine learning algorithms to evaluate the performance of such method as a complementary tool to reliably diagnose colon cancer. We obtained FTIR spectra of FHC and CaCo-2 cell lines originating from healthy and cancerous colon tissue, respectively. The analysis, based on the intensity values of specific spectral structures, suggested differences mainly in the content of lipid and protein components, but it was not reliable enough to be proposed as diagnostic tool. Therefore, we built six machine learning algorithms able to classify the two different cell types: CN2 rule induction, logistic regression, classification tree, support vector machine, k nearest neighbours, and neural network. Such models achieved classification accuracy values ranging from 87% to 100%, sensitivity from 88.1% to 100%, and specificity from 82.9% to 100%. By comparing the experimental data, the neural network resulted to be the model with the best performance parameters, having excellent values of accuracy, sensitivity, and specificity both in the low-wavenumber range (1000–1760 cm−1) and in the high-wavenumber range (2700–3700 cm−1). These results are encouraging for the application of the FTIR technique, assisted by machine learning algorithms, as a complementary diagnostic tool for cancer detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3