Influence of Heat Treatment on Cyclic Response of Nickel-Based Superalloy Inconel 718 up to Very-High Cycle Regime

Author:

Zhao MengxiongORCID,Zhao Zhenhua,Liu LuluORCID,Luo Gang,Chen WeiORCID

Abstract

Cyclic response and fatigue behavior are sensitive to the microstructure of material induced by heat treatment. In this paper, three sets of high-temperature superalloy Inconel 718 with different heat treatment, namely annealed, aged, and directly aged high quality (DAHQ), are compared. Difference in grain size distribution, phase, and precipitate, etc., were investigated using an optical camera and scanning electron microscopy. Yield and ultimate strength were found to increase obviously after aging heat treatment. Self-heating phenomenon at 20 kHz was attenuated as grain size decreased. There was a transition from cyclic hardening to softening. Very-high cycle fatigue (VHCF) behavior of Inconel 718 was tested using an ultrasonic fatigue device. Crack initiation duration occupied greater than 99% of the total fatigue life. It concluded that average grain size influences VHCF strength and crack initiation mechanism, and that self-heating phenomenon is not a decisive factor on VHCF strength for Inconel 718.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3