Semantic Features-Based Discourse Analysis Using Deceptive and Real Text Reviews

Author:

Alawadh Husam M.,Alabrah AmerahORCID,Meraj TalhaORCID,Rauf Hafiz TayyabORCID

Abstract

Social media usage for news, feedback on services, and even shopping is increasing. Hotel services, food cleanliness and staff behavior are also discussed online. Hotels are reviewed by the public via comments on their websites and social media accounts. This assists potential customers before they book the services of a hotel, but it also creates an opportunity for abuse. Scammers leave deceptive reviews regarding services they never received, or inject fake promotions or fake feedback to lower the ranking of competitors. These malicious attacks will only increase in the future and will become a serious problem not only for merchants but also for hotel customers. To rectify the problem, many artificial intelligence–based studies have performed discourse analysis on reviews to validate their genuineness. However, it is still a challenge to find a precise, robust, and deployable automated solution to perform discourse analysis. A credibility check via discourse analysis would help create a safer social media environment. The proposed study is conducted to perform discourse analysis on fake and real reviews automatically. It uses a dataset of real hotel reviews, containing both positive and negative reviews. Under investigation is the hypothesis that strong, fact-based, realistic words are used in truthful reviews, whereas deceptive reviews lack coherent, structural context. Therefore, frequency weight–based and semantically aware features were used in the proposed study, and a comparative analysis was performed. The semantically aware features have shown strength against the current study hypothesis. Further, holdout and k-fold methods were applied for validation of the proposed methods. The final results indicate that semantically aware features inspire more confidence to detect deception in text.

Publisher

MDPI AG

Subject

Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Pay-Close-Enough-Attention Ensemble Classifier for Spotlighting Bogus Reviews;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

2. Software Subclassification Based on BERTopic-BERT-BiLSTM Model;Electronics;2023-09-08

3. AI in Changing the Way People Engage and Communicate in Media: A Review;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3