Efficient Solution Resilient to Noise and Anchor Position Error for Joint Localization and Synchronization Using One-Way Sequential TOAs

Author:

Zhang Shuyi1ORCID,Xu Yihuai1,Tang Beichuan1,Yang Yanbing12ORCID,Sun Yimao12ORCID

Affiliation:

1. College of Computer Science, Sichuan University, Chengdu 610065, China

2. Institute for Industrial Internet Research, Sichuan University, Chengdu 610065, China

Abstract

Joint localization and synchronization (JLAS) is a technology that simultaneously determines the spatial locations of user nodes and synchronizes the clocks between user nodes (UNs) and anchor nodes (ANs). This technology is crucial for various applications in wireless sensor networks. Existing solutions for JLAS are either computationally demanding or not resilient to noise. This paper addresses the challenge of localizing and synchronizing a mobile user node in broadcast-based JLAS systems using sequential one-way time-of-arrival (TOA) measurements. The AN position uncertainty is considered along with clock offset and skew. Two redundant variables that couple the unknowns are introduced to pseudo-linearize the measurement equation. In projecting the equation to the nullspace spanned by the coefficients of the redundant variables, the affection of them can be eliminated. While the closed-form projection solution provides an initial point for iteration, it is suboptimal and may not achieve the Cramér-Rao lower bound (CRLB) when noise or AN position error is relatively large. To improve performance, we propose a novel robust iterative solution (RIS) formulated through factor graphs and developed via message passing. The RIS outperforms the common Gauss–Newton iteration, especially in high-noise scenarios. It exhibits a lower root mean-square error (RMSE) and a higher probability of converging to the optimal solution, while maintaining manageable computational complexity. Both analytical results and numerical simulations validate the superiority of the proposed solution in terms of performance, resilience, and computational load.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3