Mechanism of Iron Transport in the Triticum aestivum L.–Soil System: Perception from a Pot Experiment

Author:

Zhang Surong12,Yang Junquan12,Wang Daming12ORCID,Liu Jihong12,Wang Jianhua3,Duan Xiaolong12,Yang Lingzhi4

Affiliation:

1. Tianjin Centre, China Geological Survey (North China Center for Geoscience Innovation), Tianjin 300170, China

2. Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin 300170, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

4. Hebei Research Center for Geoanalysis, Baoding 071000, China

Abstract

Iron is one of the necessary trace elements for plant growth and the human body. The ‘hidden hunger’ phenomenon in the human body caused by an imbalance of iron in soil is increasingly prominent. Addressing this issue and optimizing soil through regulatory measures to improve the absorption and utilization of iron by crops has become an urgent priority in agricultural development. This study carries out pot experiments to observe the growth process of Triticum aestivum L. under various soil iron environments. Combined with previous research results, the transport mechanism of iron in the soil—Triticum aestivum L. system was systematically explored. The results indicate that during the jointing and maturity stages of Triticum aestivum L., iron was preferentially enriched in the underground parts; at the maturity stage, the iron content in various organs of Triticum aestivum L. shows a trend of increase followed by a decrease with the soil iron content varying in the following sequence: deficient, moderately deficient, medium, moderately adequate, and adequate. The iron-deficient stress environment causes an increase in the effectiveness of rhizosphere iron, resulting in a higher level of iron in the plant stems, leaves, and seeds. Conversely, when the soil iron content is medium or adequate, the effectiveness of rhizosphere iron decreases, leading to a reduction in the iron content in each part of the plant. A concentration gradient of 7.2 mg/kg in the experimental setup is found to be the most favorable to the enrichment of iron in the shoots of Triticum aestivum L. plants. The findings of this experiment provide guidance for the fertilization strategy to mitigate iron deficiency symptoms in plants under similar acidic-alkaline conditions of soil, as well as a systematic mechanism reference and basis for studying the soil-plant-human health relationship.

Funder

National Natural Science Foundation of China

the project of the China Geological Survey

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3