Development of a Disposable, Amperometric Glycerol Biosensor Based on a Screen-Printed Carbon Electrode, Modified with the Electrocatalyst Meldolas Blue, Coated with Glycerol Dehydrogenase and NAD+: Application to the Analysis of Wine Quality

Author:

Ekonomou Sotirios I.1ORCID,Crew Adrian1ORCID,Doran Olena1,Hart John P.1ORCID

Affiliation:

1. Centre for Research in Biosciences, School of Applied Sciences, College for Health, Science and Society, University of the West of England, Coldharbour Ln, Bristol BS16 1QY, UK

Abstract

This paper describes the design and development of a novel electrochemical biosensor for measuring glycerol in wine. Our initial detailed studies were aimed at deducing the optimum conditions for biosensor operation by conducting hydrodynamic voltammetric and amperometric studies. The resulting voltammograms revealed a maximum electrocatalytic current at 0.0 V vs. Ag/AgCl, which we used for all further studies. We also examined the effect of pH (8–10) on the amperometric responses of different glycerol concentrations over a range of 0.04 to 0.20 mM. Based on our findings, we propose that pH 9 would be suitable as the supporting electrolyte for further studies with the amperometric biosensor. The biosensor was constructed by immobilising 10 units of GLDH and 660 μg NAD+ onto the MB-SPCE surface using glutaraldehyde (GLA) as a cross-linking agent. Calibration studies were performed with glycerol over the 1.0–7.5 mM concentration range. Chronoamperometry was the electrochemical technique chosen for this purpose as it is convenient and can be performed with only 100 μL of sample directly deposited onto the biosensor’s surface. In the current study, we observed linear calibration plots with the above standard solutions using current measurements at a selection of sampling times along the chronoamperograms (30–340 s). We have evaluated the glycerol biosensor by carrying out an analysis of commercially available red wine. Overall, these findings will form a platform for the development of novel rapid technology for point-of-test evaluation of glycerol in the production and quality control of wine.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3