Evolution of Industrial Robots from the Perspective of the Metaverse: Integration of Virtual and Physical Realities and Human–Robot Collaboration

Author:

You Jing1,Wu Zhiyuan1,Wei Wei2,Li Ning1,Yang Yuhua3

Affiliation:

1. School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou 213161, China

2. School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China

3. Changzhou Inspection Testing and Standard Accreditation Institute, Changzhou 213164, China

Abstract

During the transition from Industry 4.0 to Industry 5.0, industrial robotics technology faces the need for intelligent and highly integrated development. Metaverse technology creates immersive and interactive virtual environments, allowing technicians to perform simulations and experiments in the virtual world, and overcoming the limitations of traditional industrial operations. This paper explores the application and evolution of metaverse technology in the field of industrial robotics, focusing on the realization of virtual–real integration and human–machine collaboration. It proposes a design framework for a virtual–real interaction system based on the ROS and WEB technologies, supporting robot connectivity, posture display, coordinate axis conversion, and cross-platform multi-robot loading. This paper emphasizes the study of two key technologies for the system: virtual–real model communication and virtual–real model transformation. A general communication mechanism is designed and implemented based on the ROS, using the ROS topic subscription to achieve connection and real-time data communication between physical robots and virtual models, and utilizing URDF model transformation technology for model invocation and display. Compared with traditional simulation software, i.e., KUKA Sim PRO (version 1.1) and RobotStudio (version 6.08), the system improves model loading by 45.58% and 24.72%, and the drive response by 41.50% and 28.75%. This system not only supports virtual simulation and training but also enables the operation of physical industrial robots, provides persistent data storage, and supports action reproduction and offline data analysis and decision making.

Funder

Science and Technology Project of Jiangsu Provincial Administration for Market Regulation

Jiangsu Petrochemical Process Key Equipment Digital Twin Technology Engineering Research Center Open Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3