Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates

Author:

Kozhina Elizaveta P.,Bedin Sergey A.ORCID,Nechaeva Natalia L.,Podoynitsyn Sergey N.,Tarakanov Vladimir P.,Andreev Stepan N.ORCID,Grigoriev Yuriy V.,Naumov Andrey V.

Abstract

This paper presents a cost-effective approach for the template-assisted electrodeposition fabrication of substrates for surface-enhanced Raman scattering (SERS) with metal nanowires (NWs) grown in pores of polymer track-etched membranes (TM). This technique allows the synthesis of NWs array with its certain surface density and diameter (from dozen to hundreds of nm). NWs length also may be varied (order of μm) by controlling deposition time. Here we grow vertical Ag-NWs which are leaning towards their nearest neighbors, forming self-assembled bundles whose parameters depend on the NW aspect ratio (length to diameter). We show that in such bundles there are “hot spots” in the nm-gaps between NWs tips. Computer simulations have demonstrated a strong enhancement of the electric field within these hot spots; thus, the Raman signal is markedly amplified for analyte molecules placed directly inside the gaps. We have experimentally proved the potential of this SERS-technique on the example of 4-Mercaptophenylboronic acid (4-MPBA). For 4-MPBA the maximal enhancement of Raman signal was found at NWs length of ~1.6 μm and diameter of ~100 nm. The effect is higher (up to twice) if “wet” substrate is used just immediately after the TM polymer removal so that the tips are brought to lean after analyte exposure. We suggest this new type of nanostructured SERS-substrates as a base of effective sensing of extremely low concentration of analytes.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3