Functional Evaluation of a Novel Multi-Axial Alveolar Distractor—Preliminary In Vivo Animal Study

Author:

Wu Cheng-HsienORCID,Chen Kun-Chun,Lin Yang-Sung,Liu Yuan-Chih,Lin Chun-LiORCID

Abstract

This study evaluates the biomechanical performance of a new multi-axial alveolar distractor using an animal study. The multi-axial alveolar distractor is designed with a ball and socket joint mechanism that can rotate up to 60° toward the buccal/lingual and mesial/distal sides intra-operatively to achieve vector control. The transport segment can be moved through activating the transport screw with 0.25 pitch, allowing 13 mm in distraction height. This distractor was fixed at the right angulus mandibular of experimental rabbits and adjusted 15° toward the mesial side and 25° toward the buccal side as Group TMB (toward mesial-buccal) (n = 3), and 15° toward the mesial side as Group TM (toward mesial) (n = 3). Group TC (control) was the control group. The distractors were activated 1 mm/day for 13 days. Living bone growth was observed at various periods. The total bone growth length at the angulus region and buccal side distraction thickness after distraction were calculated. The variations in bone growth geometric shape at the mandible angulus were also recorded. Fracture testing was performed to understand the variations in the mechanical strength between the distracted and intact bone specimens. The digital radiography results showed that the osteotomy areas at the mandible angulus were healed and the bone growth completed after surgery. The average bone growth length of Group TMB was 17.68 mm. This was greater than that of Group TM at 14.79 mm. The corresponding buccal side distractor thicknesses for Group TMB and TM after distraction were 5.12 ± 0.52 mm and 3.32 ± 0.37 mm, respectively. The tensile strengths of the bone specimens after distraction of Groups TMB, TM and TC were 172.13 N, 119.27 N and 304.24 N, respectively, and the percentage of distraction bone tensile strength to normal bone was 57% and 39% for Groups TMB and TM, respectively. This study concluded that this new multi-axial alveolar bone distractor can drive bones to grow in accordance with the direction/angle of the distraction plan. The bone growth healed gradually and presented insufficient mechanical strength.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3