Technical Feasibility and Histological Analysis of Balloon-Expandable Metallic Stent Placement in a Porcine Eustachian Tube

Author:

Kim Yehree,Kang Woo Seok,Kang Jeon Min,Ryu Dae Sung,Kwak Min YoungORCID,Song Ho-Young,Park Jung-HoonORCID,Park Hong Ju

Abstract

There is a clinical need to develop a stent to treat obstructive and refractory Eustachian tube dysfunction (ETD) after balloon Eustachian tuboplasty. An animal model for stent placement in the Eustachian tube (ET) is needed to develop optimal designs and materials, as stents for ETD have not been clinically applied. The purpose of this study was to evaluate the technical feasibility of stent placement and histological changes in a porcine ET model. Six ETs were evaluated in three pigs. Cobalt–chrome alloy stents with two different diameters were placed in the left and right ET of each animal (right, 3.5 mm; left, 2.5 mm). The outcomes were assessed by endoscopic and fluoroscopic imaging during the procedure, computed tomography after the procedure, and by histological examinations. Stent placement was technically successful in all specimens after metallic guiding sheaths were located in the nasopharyngeal end of the ET. The mean luminal diameters of the proximal, middle, and distal portions of the larger stents in the right ETs were 3.48 mm, 2.54 mm, and 2.15 mm, respectively. In the left ETs using smaller stents, these values were 2.49 mm, 1.73 mm, and 1.42 mm, respectively. The diameters of the inserted stents differed by stent location and the original diameter. Histological findings showed tissue hyperplasia with severe inflammatory cell infiltration at 4 weeks after stent placement. In conclusion, stent placement into the porcine ET was technically feasible, and stent-induced tissue hyperplasia was significantly evident. The luminal configuration of the placed ET stent changed according to its non-elastic nature and anatomical features of the porcine ET. Using this model, ET stents of various materials and designs with anti-inflammatory or anti-proliferative drugs can be optimized for future treatments of ET dysfunction.

Funder

Asan Institute for Life Sciences, Asan Medical Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3