Refractive Index Modulation for Metal Electrodeposition-Based Active Smart Window Applications

Author:

Kim Hyojung1,Kang Bong23,Moon Cheon4ORCID

Affiliation:

1. Department of Semiconductor Systems Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

2. Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea

3. Advanced Energy Research Center, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea

4. Department of Display Materials Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, Chungnam, Republic of Korea

Abstract

One of the remarkable choices for active smart window technology is adopting a metal active layer via reversible metal electrodeposition (RME). As the metal layer efficiently blocks the solar energy gain, even a hundred-nanometer-thick scale, RME-based smart window has great attention. Recent developments are mainly focused on the various cases of electrolyte components and composition meeting technological standards. As metal nanostructures formed through the RME process involve plasmonic phenomena, advanced analysis, including plasmonic optics, which is beyond Beer–Lambert’s law, should be considered. However, as there is a lack of debates on the plasmonic optics applied to RME smart window technology, as research is mainly conducted through an exhaustive process. In this paper, in order to provide insight into the RME-based smart window development and alleviate the unclear part of plasmonic optics applied to the field, finite-difference time-domain electromagnetic simulations are conducted. In total, two extremely low-quality (Cr) and high-quality (Mg) plasmonic materials based on a nanoparticle array are considered as a metal medium. In addition, optical effects caused by the metal active layer, electrolyte, and nanoparticle embedment are investigated in detail. Overall simulations suggest that the effective refractive index is a decisive factor in the performance of RME-based smart windows.

Funder

Soonchunhyang University Research Fund

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3