Numerical Simulations of Combined Dielectrophoresis and Alternating Current Electrothermal Flow for High-Efficient Separation of (Bio)Microparticles

Author:

Jiang Hao1,Li Yalin1,Du Fei2,Nie Zhaoguang1,Wei Gang1ORCID,Wang Yan1ORCID,Liu Xiaomin1

Affiliation:

1. College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China

2. Institute of Water Chemistry, Technische Universität Dresden, D 01062 Dresden, Germany

Abstract

High-efficient separation of (bio)microparticles has important applications in chemical analysis, environmental monitoring, drug screening, and disease diagnosis and treatment. As a label-free and high-precision separation scheme, dielectrophoresis (DEP) has become a research hotspot in microparticle separation, especially for biological cells. When processing cells with DEP, relatively high electric conductivities of suspending media are sometimes required to maintain the biological activities of the biosample, which results in high temperature rises within the system caused by Joule heating. The induced temperature gradient generates a localized alternating current electrothermal (ACET) flow disturbance, which seriously impacts the DEP manipulation of cells. Based on this, we propose a novel design of the (bio)microparticle separator by combining DEP with ACET flow to intensify the separation process. A coupling model that incorporates electric, fluid flow, and temperature fields as well as particle tracking is established to predict (bio)microparticle trajectories within the separator. Numerical simulations reveal that both ACET flow and DEP motion act in the same plane but in different directions to achieve high-precision separation between particles. This work provides new design ideas for solving the very tricky Joule heating interference in the DEP separation process, which paves the way for further improving the throughput of the DEP-based (bio)microparticle separation system.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Taishan Scholars Program of Shandong Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3