Study on Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting

Author:

Huang Shuo1,Zeng Junyong2,Wang Wenqi2,Zhao Zhenyu2

Affiliation:

1. School of Mathematics and Information Engineering, Xinyang Institute of Vocational Technology, Xinyang 464000, China

2. School of Sino-German Robitics, Shenzhen Institute of Information Technology, Shenzhen 518172, China

Abstract

Laser-based additive manufacturing has garnered significant attention in recent years as a promising 3D-printing method for fabricating metallic components. However, the surface roughness of additive manufactured components has been considered a challenge to achieving high performance. At present, the average surface roughness (Sa) of AM parts can reach high levels, greater than 50 μm, and a maximum distance between the high peaks and the low valleys of more than 300 μm, which requires post machining. Therefore, laser polishing is increasingly being utilized as a method of surface treatment for metal alloys, wherein the rapid remelting and resolidification during the process significantly alter both the surface quality and subsurface material properties. In this paper, the surface roughness, microstructures, microhardness, and wear resistance of the as-received, continuous wave laser polishing (CWLP), and pulsed laser polishing (PLP) processed samples were investigated systematically. The results revealed that the surface roughness (Sa) of the as-received sample was 6.29 μm, which was reduced to 0.94 μm and 0.84 μm by CWLP and PLP processing, respectively. It was also found that a hardened layer, about 200 μm, was produced on the Ti6Al4V alloy surface after laser polishing, which can improve the mechanical properties of the component. The microhardness of the laser-polished samples was increased to about 482 HV with an improvement of about 25.2% compared with the as-received Ti6Al4V alloy. Moreover, the coefficient of friction (COF) was slightly reduced by both CWLP and LPL processing, and the wear rate of the surface layer was improved to 0.790 mm3/(N∙m) and 0.714 mm3/(N∙m), respectively, under dry fraction conditions.

Funder

Technology Innovation Platform Project of Shenzhen Institute of Information Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of laser polishing on Ti6Al4V based on energy density;Journal of Materials Processing Technology;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3