Effect of Mo Content on In-Situ Anisometric Grains Growth and Mechanical Properties of Mo2FeB2-Based Cermets

Author:

Shen Yupeng,Xie Wuxi,Sun Bingbing,Liu Yunfei,Li Yajin,Cao Zhen,Jian Yongxin,Huang Zhifu

Abstract

Mo2FeB2-based cermets have wide applications in fields of wear resistance, corrosion resistance and heat resistance due to their simple preparation process, low-cost raw materials, and prominent mechanical properties. Herein, Mo2FeB2-based cermets with xMo (x = 43.5, 45.5, 47.5, 49.5, wt.%) were prepared by means of the vacuum liquid phase sintering technique. Investigations on the microstructure and mechanical properties of Mo2FeB2-based cermets with Mo addition were performed. Experimental results show that, with Mo content increasing, the average particle size decreases gradually, revealing that the grain coarsening of Mo2FeB2-based cermets is controlled by interface reaction. In addition, Mo2FeB2 grains gradually transform from an elongated shape to a nearly equiaxed shape. The improvement of Mo2FeB2 hard phase on the morphology is mainly due to the inhibition of solution–precipitation reaction by increasing Mo. Furthermore, the relative density of cermets decreases due to the reduced Fe content. When Mo content is 47.5 wt.%, a relatively small grain size of Mo2FeB2 is obtained (about 2.03 μm). Moreover, with the increase in Mo content, hardness and transverse rupture strength (TRS) of Mo2FeB2-based cermets increase firstly and then decrease. Whereas, with increasing Mo content, the fracture toughness deteriorates gradually. When Mo content is 47.5 wt.%, the comprehensive mechanical properties of cermets are the best. The optimal raw material ratio for the preparation of Mo2FeB2-based cermets in this study is determined to be 47.5 wt.% Mo–6.0 wt.% B-Fe.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3