Occurrence of SiC and Diamond Polytypes, Chromite and Uranophane in Breccia from Nickel Laterites (New Caledonia): Combined Analyses

Author:

El Mendili YassineORCID,Orberger Beate,Chateigner DanielORCID,Bardeau Jean-FrançoisORCID,Gascoin StéphanieORCID,Petit Sébastien,Perez Olivier

Abstract

Different techniques have been combined to identify the structure and the chemical composition of siliceous breccia from a drill core of nickel laterites in New Caledonia (Tiebaghi mine). XRD analyses show quartz as a major phase. Micro-Raman spectroscopy confirmed the presence of reddish microcrystalline quartz as a major phase with inclusion of microparticles of iron oxides and oxyhydroxide. Lithoclasts present in breccia are composed of lizardite, chrysotile, forsterite, hedenbergite and saponite. The veins cutting through the breccia are filled with Ni-bearing talc. Furthermore, for the first time, we discovered the presence of diamond microcrystals accompanied by moissanite polytypes (SiC), chromite (FeCr2O4) and uranophane crystals (Ca(UO2)2(SiO3OH)2.5(H2O)) and lonsdaleite (2H-[C-C]) in the porosities of the breccia. The origin of SiC and diamond polytypes are attributed to ultrahigh-pressure crystallization in the lower mantle. The SiC and diamond polytypes are inherited from serpentinized peridotites having experienced interaction with a boninitic melt. Serpentinization, then weathering of the peridotites into saprolite, did not affect the resistant SiC polytypes, diamond and lonsdaleite. During karstification and brecciation, silica rich aqueous solutions partly digested the saprolite. Again, the SiC polymorph represent stable relicts from this dissolution process being deposited in breccia pores. Uranophane is a neoformed phase having crystallized from the silica rich aqueous solutions. Our study highlights the need of combining chemical and mineralogical analytical technologies to acquire the most comprehensive information on samples, as well as the value of Raman spectroscopy in characterizing structural properties of porous materials.

Funder

European Commission

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference84 articles.

1. A new occurrence of diamonds in ultramafic rocks in Armenia;Gevorkyan;Dokl. AN Armen. SSR,1976

2. Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey;Lian;Am. Mineral.,2017

3. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite

4. An Alternative Scenario on the Origin of Ultra-High Pressure (UHP) and Super-Reduced (SuR) Minerals in Ophiolitic Chromitites: A Case Study from the Mercedita Deposit (Eastern Cuba)

5. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3