Modeling of Heat Stress in Sows—Part 1: Establishment of the Prediction Model for the Equivalent Temperature Index of the Sows

Author:

Cao Mengbing,Zong Chao,Wang Xiaoshuai,Teng Guanghui,Zhuang Yanrong,Lei Kaidong

Abstract

Heat stress affects the estrus time and conception rate of sows. Compared with other life stages of pigs, sows are more susceptible to heat stress because of their increased heat production. Various indicators can be found in the literature assessing the level of heat stress in pigs. However, none of them is specific to assess the sows’ thermal condition. Moreover, thermal indices are mainly developed by considering partial environment parameters, and there is no interaction between the index and the animal’s physiological response. Therefore, this study aims to develop a thermal index specified for sows, called equivalent temperature index for sows (ETIS), which includes parameters of air temperature, relative humidity and air velocity. Based on the heat transfer characteristics of sows, multiple regression analysis is used to combine air temperature, relative humidity and air velocity. Environmental data are used as independent variables, and physiological parameters are used as dependent variables. In 1029 sets of data, 70% of the data is used as the training set, and 30% of the data is used as the test set to create and develop a new thermal index. According to the correlation equation between ETIS and temperature-humidity index (THI), combined with the threshold of THI, ETIS was divided into thresholds. The results show that the ETIS heat stress threshold is classified as follows: suitable temperature ETIS < 33.1 °C, mild temperature 33.1 °C ≤ ETIS < 34.5 °C, moderate stress temperature 34.5 °C ≤ ETIS < 35.9 °C, and severe temperature ETIS ≥ 35.9 °C. The ETIS model can predict the sows’ physiological response in a good manner. The correlation coefficients R of skin temperature was 0.82. Compared to early developed thermal indices, ETIS has the best predictive effect on skin temperature. This index could be a useful tool for assessing the thermal environment to ensure thermal comfort for sows.

Funder

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3