A Hydrological Data Prediction Model Based on LSTM with Attention Mechanism

Author:

Dai Zhihui1,Zhang Ming2,Nedjah Nadia3ORCID,Xu Dong4,Ye Feng1

Affiliation:

1. School of Computer and Information, Hohai University, Nanjing 211100, China

2. Water Resources Department of Jiangsu Province, Nanjing 210029, China

3. Department of Electronics Engineering and Telecommunications of the Engineering Faculty, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil

4. College of Water Conservancy & Hydropower Engineering, Hohai University, Nanjing 211100, China

Abstract

With the rapid development of IoT, big data and artificial intelligence, the research and application of data-driven hydrological models are increasing. However, when conducting time series analysis, many prediction models are often directly based on the following assumptions: hydrologic time series are normal, homogeneous, smooth and non-trending, which are not always all true. To address the related issues, a solution for short-term hydrological forecasting is proposed. Firstly, a feature test is conducted to verify whether the hydrological time series are normal, homogeneous, smooth and non-trending; secondly, a sequence-to-sequence (seq2seq)-based short-term water level prediction model (LSTM-seq2seq) is proposed to improve the accuracy of hydrological prediction. The model uses a long short-term memory neural network (LSTM) as an encoding layer to encode the historical flow sequence into a context vector, and another LSTM as a decoding layer to decode the context vector in order to predict the target runoff, by superimposing on the attention mechanism, aiming at improving the prediction accuracy. Using the experimental data regarding the water level of the Chu River, the model is compared to other models based on the analysis of normality, smoothness, homogeneity and trending of different water level data. The results show that the prediction accuracy of the proposed model is greater than that of the data set without these characteristics for the data set with normality, smoothness, homogeneity and trend. Flow data at Runcheng, Wuzhi, Baima Temple, Longmen Town, Dongwan, Lu’s and Tongguan are used as input data sets to train and evaluate the model. Metrics RMSE and NSE are used to evaluate the prediction accuracy and convergence speed of the model. The results show that the prediction accuracy of LSTM-seq2seq and LSTM-BP models is higher than other models. Furthermore, the convergence process of the LSTM-seq2seq model is the fastest among the compared models.

Funder

National Key R&D Program of China

Water Science and Technology Project of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3