Type 2 Diabetes in Obesity: A Systems Biology Study on Serum and Adipose Tissue Proteomic Profiles

Author:

Arderiu Gemma,Mendieta Guiomar,Gallinat AlexORCID,Lambert CarmenORCID,Díez-Caballero Alberto,Ballesta Carlos,Badimon LinaORCID

Abstract

Obesity is associated with metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM), further increasing an already heightened cardiovascular risk. Here, amongst obese class III bariatric surgery patients, we have investigated the effect of T2DM in serum and in two, same patient, adipose tissue (AT) depots through proteomic profile expression analyses. Serum and AT samples from subcutaneous (SAT) and visceral (VAT) fat were collected during bariatric surgery. Bead-based targeted multiplex assay systems were used to simultaneously detect and quantify multiple targets in serum samples (targeted proteomics) and analyze changes in adipokine serum composition. AT samples were assessed through an untargeted proteomics approach. Through a systems biology analysis of the proteomic data, information on the affected biological pathways was acquired. In obese class III individuals, the presence of T2DM induced a significantly higher systemic release of ghrelin, GLP-1, glucagon, MMP3, BAFF, chitinase 3-like 1, TNF-R1 and TNF-R2, and a lower systemic release of IL-8. SAT and VAT proteomes belonging to the same patient showed significant differences in local protein content. While the proteins upregulated in VAT were indicative of metabolic dysregulation, SAT protein upregulation suggested adequate endocrine regulation. The presence of T2DM significantly affected VAT protein composition through the upregulation of dysregulating metabolic pathways, but SAT protein composition was not significantly modified. Our results show that T2DM induces metabolic dysregulation in obese individuals with changes in systemic marker levels and impairment of proteostasis in VAT but not in SAT.

Funder

Plan Nacional Proyectos Investigación Desarrollo

Centro de Investigación Biomedica en Red Cardiovascular

Institute of Health Carlos III

Secretaria d’Universitats i Recerca, Departament d’Economia i Coneixement

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3