Affiliation:
1. Engineering Research Center of Education Ministry for Renewable Energy Power Generation and Grid-Connected Control, Xinjiang University, Urumqi 830017, China
Abstract
The application of 5G-based communication for pilot protection in a distribution network with distributed generators is becoming increasingly widespread, but the existence of a 5G communication transmission data delay adversely affects the rapidity and reliability of the pilot protection based on the principle of the traditional dynamic time warping distance (DTW) algorithm. Therefore, to address this problem, and according to the difference in fault currents between distributed generators and synchronous machines, a new scheme of pilot protection based on the principle of an improved DTW is proposed. The scheme firstly performs cosine transform on the fault current sequence, and then it normalizes the DTW value. Finally, the proposed scheme is verified via simulation. The simulation results show that, compared with the traditional DTW, the proposed algorithm has better anti-delay characteristics and a stronger anti-interference ability, and the scheme can quickly and reliably identify in-zone and out-of-area faults with strong noise resistance. Further, the action times for a single-phase ground fault, two-phase ground fault, two-phase-to-phase fault, and three-phase short-circuit fault were reduced by 2.9 ms, 4.54 ms, 5.81 ms, and 5.89 ms, respectively. In addition, it is also sui for a distribution network with a high wind and photovoltaic penetration rate.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献