Deep Learning-Based Autoscaling Using Bidirectional Long Short-Term Memory for Kubernetes

Author:

Dang-Quang Nhat-Minh,Yoo Myungsik

Abstract

Presently, the cloud computing environment attracts many application developers to deploy their web applications on cloud data centers. Kubernetes, a well-known container orchestration for deploying web applications on cloud systems, offers an automatic scaling feature to meet clients’ ever-changing demands with the reactive approach. This paper proposes a system architecture based on Kubernetes with a proactive custom autoscaler using a deep neural network model to handle the workload during run time dynamically. The proposed system architecture is designed based on the Monitor–Analyze–Plan–Execute (MAPE) loop. The main contribution of this paper is the proactive custom autoscaler, which focuses on the analysis and planning phases. In analysis phase, Bidirectional Long Short-term Memory (Bi-LSTM) is applied to predict the number of HTTP workloads in the future. In the planning phase, a cooling-down time period is implemented to mitigate the oscillation problem. In addition, a resource removal strategy is proposed to remove a part of the resources when the workload decreases, so that the autoscaler can handle it faster when the burst of workload happens. Through experiments with two different realistic workloads, the Bi-LSTM model achieves better accuracy not only than the Long Short-Term Memory model but also than the state-of-the-art statistical auto-regression integrated moving average model in terms of short- and long-term forecasting. Moreover, it offers 530 to 600 times faster prediction speed than ARIMA models with different workloads. Furthermore, as compared to the LSTM model, the Bi-LSTM model performs better in terms of resource provision accuracy and elastic speedup. Finally, it is shown that the proposed proactive custom autoscaler outperforms the default horizontal pod autoscaler (HPA) of the Kubernetes in terms of accuracy and speed when provisioning and de-provisioning resources.

Funder

ITRC (Information Technology Research Center) support program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing resource allocation using proactive scaling with predictive models and custom resources;Computers and Electrical Engineering;2024-09

2. Proactive auto-scaling technique for web applications in container-based edge computing using federated learning model;Journal of Parallel and Distributed Computing;2024-05

3. SLA-Adaptive Threshold Adjustment for a Kubernetes Horizontal Pod Autoscaler;Electronics;2024-03-27

4. Microservices performance forecast using dynamic Multiple Predictor Systems;Engineering Applications of Artificial Intelligence;2024-03

5. Predictive Autoscaling for Containerized Applications Using Machine Learning;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3