Abstract
This paper is aimed at addressing the tracking control issue for an n-DOF manipulator regardless of unknown friction and unknown control direction. In order to handle the above issues, an adaptive sliding mode control (ASMC) is developed with a Nussbaum function. The sliding mode control (SMC) in the proposed control guarantees the tracking problem and fast responses for the manipulator. Additionally, there are adaptive laws for the robust gain in the SMC to deal with the unknown external disturbance and reduce the chattering effect in the system. In practice, the mistakes in the connection between actuators and drivers, named unknown control direction, cause serious damage to the manipulator. To overcome this issue, the Nussbaum function is multiplied by the ASMC law. A Lyapunov approach is investigated to analyze the stability and robustness of the whole system. Finally, several simulations are implemented on a 3-DOF manipulator and their results are compared with those of the existing controllers to validate the advantages of the proposed method.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献