Deformation Behavior and Microstructure Evolution of CoCrNi Medium-Entropy Alloy Shaped Charge Liners

Author:

Chen Jian,Liu Tian-Wei,Cao Fu-Hua,Wang Hai-Ying,Chen Yan,Dai Lan-HongORCID

Abstract

To investigate the microstructure evolution and dynamic deformation behavior of a CoCrNi medium entropy alloy under an ultrahigh explosive loading rate, CoCrNi-shaped charged liners were fabricated and fired into steel targets. Targets with residual jet fragments were recovered for detailed microstructural analysis using scanning electrical microscopy, X-ray diffraction, electron backscattered diffraction, and transmission electron microscopy. The results indicate that the grain size was reduced by more than 3 times and grains were found to be equiaxed in the residual jet, which indicates that dynamic recrystallization (DRX) occurred during this extremely high strain rate and large plastic deformation. Furthermore, the content of Cr element in CoCrNi at the grain boundaries increased significantly after detonation deformation. The reduced grain sizes are believed to reduce the bulk diffusion path of Cr from grain interior into grain boundaries with the support of sufficient energy provided by the ultrahigh temperature. The enrichment of Cr at grain boundaries promotes the formation of nanosized Cr-rich precipitates with body-centered cubic (BCC) structures, which were found to be widely distributed along grain boundaries in the residual jet. These precipitates were considered obstacles for grain boundary movement and promotion of crack initiation along the grain boundaries, which might cause ductility loss of the CoCrNi-shaped charge jet and loss of penetration capability.

Funder

National Natural Science Foundation of China

the NSFC Basic Science Center Program for “Multiscale Problems in Non-linear Mechanics”

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3