On Underdispersed Count Kernels for Smoothing Probability Mass Functions

Author:

Kokonendji Célestin C.12ORCID,Somé Sobom M.34ORCID,Esstafa Youssef5,Bourguignon Marcelo6ORCID

Affiliation:

1. Laboratoire de Mathématiques de Besançon UMR 6623 CNRS-UBFC, Université Bourgogne Franche-Comté, 16 Route de Gray, CEDEX, 25030 Besançon, France

2. Laboratoire de Mathématiques et Connexes de Bangui, Université de Bangui, Av. des Martyrs, Bangui B.P. 908, Central African Republic

3. Laboratoire d’Analyse Numérique Informatique et de BIOmathématique, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso

4. Laboratoire Sciences et Techniques, Université Thomas SANKARA, Ouagadougou 12 BP 417, Burkina Faso

5. Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue Olivier Messiaen, CEDEX 09, 72085 Le Mans, France

6. Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil

Abstract

Only a few count smoothers are available for the widespread use of discrete associated kernel estimators, and their constructions lack systematic approaches. This paper proposes the mean dispersion technique for building count kernels. It is only applicable to count distributions that exhibit the underdispersion property, which ensures the convergence of the corresponding estimators. In addition to the well-known binomial and recent CoM-Poisson kernels, we introduce two new ones such the double Poisson and gamma-count kernels. Despite the challenging problem of obtaining explicit expressions, these kernels effectively smooth densities. Their good performances are pointed out from both numerical and comparative analyses, particularly for small and moderate sample sizes. The optimal tuning parameter is here investigated by integrated squared errors. Also, the added advantage of faster computation times is really very interesting. Thus, the overall accuracy of two newly suggested kernels appears to be between the two old ones. Finally, an application including a tail probability estimation on a real count data and some concluding remarks are given.

Funder

Brazilian-French Network in Mathematics

Publisher

MDPI AG

Subject

Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3