Deep Learning Techniques in the Classification of ECG Signals Using R-Peak Detection Based on the PTB-XL Dataset

Author:

Śmigiel SandraORCID,Pałczyński KrzysztofORCID,Ledziński DamianORCID

Abstract

Deep Neural Networks (DNNs) are state-of-the-art machine learning algorithms, the application of which in electrocardiographic signals is gaining importance. So far, limited studies or optimizations using DNN can be found using ECG databases. To explore and achieve effective ECG recognition, this paper presents a convolutional neural network to perform the encoding of a single QRS complex with the addition of entropy-based features. This study aims to determine what combination of signal information provides the best result for classification purposes. The analyzed information included the raw ECG signal, entropy-based features computed from raw ECG signals, extracted QRS complexes, and entropy-based features computed from extracted QRS complexes. The tests were based on the classification of 2, 5, and 20 classes of heart diseases. The research was carried out on the data contained in a PTB-XL database. An innovative method of extracting QRS complexes based on the aggregation of results from established algorithms for multi-lead signals using the k-mean method, at the same time, was presented. The obtained results prove that adding entropy-based features and extracted QRS complexes to the raw signal is beneficial. Raw signals with entropy-based features but without extracted QRS complexes performed much worse.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wearable edge machine learning with synthetic photoplethysmograms;Expert Systems with Applications;2024-03

2. IM-ECG: An interpretable framework for arrhythmia detection using multi-lead ECG;Expert Systems with Applications;2024-03

3. An Energy-Efficient ECG Processor Based on HDWT and a Hybrid Classifier for Arrhythmia Detection;Applied Sciences;2023-12-29

4. AI-Based Detection of Myocardial Infarction through Electrocardiogram Signals: A Review;2023 Eleventh International Conference on Intelligent Computing and Information Systems (ICICIS);2023-11-21

5. Enhancing ECG Analysis through Deep Learning-Based Waveform Segmentation: A Time-Frequency Approach;2023 International Conference on System, Computation, Automation and Networking (ICSCAN);2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3