Vibration Damping and Noise Reduction of a New Non-Newtonian Fluid Damper in a Washing Machine

Author:

Song Yuanjin12,Zhuang Zhong2,Wang Xianping2,Fang Qianfeng2,Cheng Zhijun2,Zhang Tao3

Affiliation:

1. Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

2. Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

3. School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China

Abstract

Due to friction vibration dampers’ inability to effectively dampen low loads during high-frequency dewatering, drum washing machines vibrated intensively. In order to address this problem, in this paper, a novel type of low-cost non-Newtonian fluid damper is proposed and investigated based on the non-Newtonian fluid shear thinning properties’ effect on vibration suppression during the high-frequency dewatering process of the washing machine. In contrast to other commonly used dampers, the homemade non-Newtonian fluid damper significantly suppresses the growth trend of the apparent elastic coefficient at high frequencies. A systematic investigation of damper structural parameters reveals that smaller gap height, higher piston head number, and more viscous fluid viscosity are adequate for vibration suppression and noise reduction. These results demonstrate that the non-Newtonian fluid damper can produce an excellent vibration-damping effect for the entire washing process of the washing machine, especially for the high-frequency dewatering process. The acceleration attenuation ratio can reach up to 83.49%, the energy attenuation is up to 98.44%, and the noise reduction is up to 10.38 dB.

Funder

GuangDong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference35 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3