Cu-Ni-Based Alloys from Nanopowders as Potent Thermoelectric Materials for High-Power Output Applications

Author:

Wolf MarioORCID,Flormann Jan,Steinhoff Timon,Gerstein Gregory,Nürnberger FlorianORCID,Maier Hans JürgenORCID,Feldhoff ArminORCID

Abstract

A new approach for the development of thermoelectric materials, which focuses on a high-power factor instead of a large figure of merit zT, has drawn attention in recent years. In this context, the thermoelectric properties of Cu-Ni-based alloys with a very high electrical conductivity, a moderate Seebeck coefficient, and therefore a high power factor are presented as promising low-cost alternative materials for applications aiming to have a high electrical power output. The Cu-Ni-based alloys are prepared via an arc melting process of metallic nanopowders. The heavy elements tin and tungsten are chosen for alloying to further improve the power factor while simultaneously reducing the high thermal conductivity of the resulting metal alloy, which also has a positive effect on the zT value. Overall, the samples prepared with low amounts of Sn and W show an increase in the power factor and figure of merit zT compared to the pure Cu-Ni alloy. These results demonstrate the potential of these often overlooked metal alloys and the utilization of nanopowders for thermoelectric energy conversion.

Publisher

MDPI AG

Reference37 articles.

1. Energy Harvesting—Materials, Physics, and System Design with Practical Examples;Kishore,2019

2. High Power Factor vs. High zT—A Review of Thermoelectric Materials for High-Temperature Application

3. Thermoelectric Material Tensor Derived from the Onsager–de Groot–Callen Model

4. Power Conversion and Its Efficiency in Thermoelectric Materials

5. The Dynamics of Heat—A Unified Approach to Thermodynamics and Heat Transfer;Fuchs,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3