Solar PV Panels-Self-Cleaning Coating Material for Egyptian Climatic Conditions

Author:

El-Mahallawi ImanORCID,Elshazly Engy,Ramadan Mohamed,Nasser Reem,Yasser Moaaz,El-Badry Seif,Elthakaby MahmoudORCID,Oladinrin Olugbenga TimoORCID,Rana Muhammad QasimORCID

Abstract

The electrical efficiency of photovoltaic panels is affected by many environmental parameters, which have a negative impact on system electrical efficiency and cost of energy, dust and increased panel temperatures being the most serious in the MENA region. In this work, a few organic-based self-cleaning coatings are developed, and their effects on PVs’ electrical efficiency re assessed for polycrystalline panels exposed to natural soiling conditions outdoors at El-Sherouk City. The results show that monolithic hydrophobic-based coatings using paraffine and dimethyl-siloxane show up to 14.3% improvement in the electrical efficiency of the PV panels, but the role of nanoparticles TiO2 and Al2O3 addition needs further investigation. Hydrophobic-based coatings using dimethyl-siloxane reduce the coated panels’ surface temperature compared with the uncoated panel.

Funder

British Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3