The Depositional Mechanism of Hydrothermal Chert Nodules in a Lacustrine Environment: A Case Study in the Middle Permian Lucaogou Formation, Junggar Basin, Northwest China

Author:

Zhou JiaquanORCID,Yang HailinORCID,Liu Hanlin,Jiao Yue

Abstract

Although chert deposits are limited in geological distribution, their geological and geochemical characteristics can provide important information to reconstruct paleoenvironmental and diagenetic processes. For the Permian period, cherts are utilized to trace global silicon cycles and hydrothermal activities in relation to the Permian Chert Event. In Northwest China, Permian chert nodules have recently been discovered in both the southeastern and northwestern margins of the Junggar Basin. We conducted an analysis of the mineralogy, petrology and geochemistry of chert nodules of the Lucaogou Formation in the southeastern margin of the Junggar Basin to identify silicon sources and determine the precipitation mechanism of chert nodules. As evidenced by petrology, the chert nodules were mainly composed of crypto-microcrystalline silica (94.33% on average), with development of a soft-sediment deformation structure, indicating the synsedimentary deposition of silicon. Proven by trace elements, high Eu/Eu* ratios (average 2.14), low total rare earth element content (average 6.03 ppm), low LaN/YbN ratios (average 0.17) and low Y/Ho ratios (average 25.25) in chert nodules supports the hydrothermal source of silicon. The wide distribution of authigenic metal-bearing minerals and the significant positive Eu anomalies observed suggest that the chert depositions in the Lucaogou Formation intermittently received high-temperature (>250 °C) hydrothermal fluids, likely associated with the initiation of the Bogda Rift in the middle Permian. Following rapid cooling down and differential compaction, siliceous sediments dehydrated and deformed, finally forming chert nodules.

Funder

National Science and Technology Major Project of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3