Temperature-Induced Phase Transition in a Feldspar-Related Compound BaZn2As2O8∙H2O

Author:

Gorelova Liudmila A.ORCID,Vereshchagin Oleg S.ORCID,Bocharov Vladimir N.ORCID,Pankin Dmitrii V.,Đorđević TamaraORCID

Abstract

The high-temperature (HT) behavior of BaAs2Zn2O8∙H2O was studied by in situ single-crystal X-ray diffraction (SCXRD) and hot stage Raman spectroscopy (HTRS) up to dehydration and the associated phase transition. During heating, the studied compound undergoes the dehydration process with the formation of BaAs2Zn2O8, which is stable up to at least 525 °C. The evolution of the fourteen main Raman bands was traced during heating. The abrupt shift of all Raman bands in the 70–1100 cm−1 spectral region was detected at 150 °C, whereas in the spectral region 3000–3600 cm−1 all the bands disappeared, which confirms the dehydration process of BaAs2Zn2O8∙H2O. The transition from BaAs2Zn2O8∙H2O to BaAs2Zn2O8 is accompanied by symmetry increasing from P21 to P21/c with the preservation of the framework topology. Depending on the research method, the temperature of the phase transition is 150 °C (HTRS) or 300 °C (HT SCXRD). According to the HT SCXRD data, in the temperature range 25–300 °C the studied compound demonstrates anisotropic thermal expansion (αmax/αmin = 9.4), which is explained by flexible crankshaft chains of TO4 (T = As, Zn) tetrahedra. Additionally, we discussed some crystal-chemical aspects of minerals with both (ZnOn) and (AsOm) polyhedra (n = 4, 5, 6; m = 3, 4) as main structural units.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference122 articles.

1. Feldspar Minerals. Crystal Structures, Physical, Chemical and Microstructural Properties;Smith,1988

2. Feldspars and Their Reactions;Parsons,1994

3. Rock-Forming Minerals. Framework Silicates: Feldspars;Deer,2001

4. Minerals. Framework Silicates, Issue 1;Bokij,2003

5. Polymorphism of feldspars above 10 GPa

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3