Application of Machine Learning Algorithms to Classification of Pb–Zn Deposit Types Using LA–ICP–MS Data of Sphalerite

Author:

Sun Guo-Tao,Zhou Jia-XiORCID

Abstract

Pb–Zn deposits supply a significant proportion of critical metals, such as In, Ga, Ge, and Co. Due to the growing demand for critical metals, it is urgent to clarify the different types of Pb–Zn deposits to improve exploration. The trace element concentrations of sphalerite can be used to classify the types of Pb–Zn deposits. However, it is difficult to assess the multivariable system through simple data analysis directly. Here, we collected more than 2200 analyses with 14 elements (Mn, Fe, Co, Ni, Cu, Ga, Ge, Ag, Cd, In, Sn, Sb, Pb, and Bi) from 65 deposits, including 48 analyses from carbonate replacement (CR), 684 analyses from distal magmatic-hydrothermal (DMH), 197 analyses from epithermal, 456 analyses from Mississippi Valley-type (MVT), 199 analyses from sedimentary exhalative (SEDEX), 377 analyses from skarn, and 322 analyses from volcanogenic massive sulfide (VMS) types of Pb–Zn deposits. The critical metals in different types of deposits are summarized. Machine learning algorithms, namely, decision tree (DT), K-nearest neighbors (KNN), naive Bayes (NB), random forest (RF), and support vector machine (SVM), are applied to process and explore the classification. Learning curves show that the DT and RF classifiers are the most suitable for classification. Testing of the DT and RF classifier yielded accuracies of 91.2% and 95.4%, respectively. In the DT classifier, the feature importances of trace elements suggest that Ni (0.22), Mn (0.17), Cd (0.13), Co (0.11), and Fe (0.09) are significant for classification. Furthermore, the visual DT graph shows that the Mn contents of sphalerite allow the division of the seven classes into three groups: (1) depleted in Mn, including MVT and CR types; (2) enriched in Mn, including epithermal, skarn, SEDEX, and VMS deposits; and (3) DMH deposits, which have variable Mn contents. Data mining also reveals that VMS and skarn deposits have distinct Co and Ni contents and that SEDEX and DMH deposits have different Ni and Ge contents. The optimal DT and RF classifiers are deployed at Streamlit cloud workspace. Researchers can select DT or RF classifier and input trace element data of sphalerite to classify the Pb–Zn deposit type.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3