Streamflow Simulation with High-Resolution WRF Input Variables Based on the CNN-LSTM Hybrid Model and Gamma Test

Author:

Wang Yizhi1ORCID,Liu Jia1,Xu Lin2,Yu Fuliang1,Zhang Shanjun1

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. Beijing Water Conservation and Utilization Management Affairs Centre, Beijing 100142, China

Abstract

Streamflow modelling is one of the most important elements for the management of water resources and flood control in the context of future climate change. With the advancement of numerical weather prediction and modern detection technologies, more and more high-resolution hydro-meteorological data can be obtained, while traditional physical hydrological models cannot make full use of them. In this study, a hybrid deep learning approach is proposed for the simulation of daily streamflow in two mountainous catchments of the Daqing River Basin, northern China. Two-dimensional high-resolution (1 km) output data from a WRF model were used as the model input, a convolutional neural network (CNN) model was used to extract the physical and meteorological characteristics of the catchment at a certain time, and the long short-term memory (LSTM) model was applied to simulate the streamflow using the time-series data extracted by the CNN model. To reduce model input noise and avoid overfitting, the Gamma test method was adopted and the correlations between the input variables were checked to select the optimal combination of input variables. The performance of the CNN-LSTM models was acceptable without using the Gamma test (i.e., with all WRF input variables included), with NSE and RMSE values of 0.9298 and 9.0047 m3/s, respectively, in the Fuping catchment, and 0.8330 and 1.1806 m3/s, respectively, in the Zijingguan catchment. However, it was found that the performance of the model could be significantly improved by the use of the Gamma test. Using the best combination of input variables selected by the Gamma test, the NSE of the Fuping catchment increased to 0.9618 and the RMSE decreased to 6.6366 m3/s, and the NSE of the Zijingguan catchment increased to 0.9515 and the RMSE decreased to 0.6366 m3/s. These results demonstrate the feasibility of the CNN-LSTM approach for flood streamflow simulation using WRF-downscaled high-resolution data. By using this approach to assess the potential impacts of climate change on streamflow with the abundant high-resolution meteorological data generated by different climate scenarios, water managers can develop more effective strategies for managing water resources and reducing the risks associated with droughts and floods.

Funder

National Natural Science Foundation of China

Major Science and Technology Program for Water Pollution Control and Treatment

National Key Research and Development Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference56 articles.

1. Continental and global scale flood forecasting systems;Emerton;Wiley Interdiscip. Rev. Water,2016

2. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction;Yaseen;J. Hydrol.,2018

3. Testing for nonlinearity of streamflow processes at different timescales;Wang;J. Hydrol.,2006

4. Skamarock, W. (2008). A Description of the Advanced Research WRF Version 3, University Corporation for Atmospheric Research. NCAR Tech. Note; NCAR/TN-475+ STR.

5. Achieving Realistic Runoff in the Western United States with a Land Surface Model Forced by Dynamically Downscaled Meteorology;Bass;J. Hydrometeorol.,2023

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3