Hydraulic Characteristics Analysis of Double-Bend Roadway of Abandoned Mine Pumped Storage

Author:

Zhou Xin1,Zhou Yuejin12ORCID,Xu Xiaoding2,Zeng Chunlin2,Zhu Chaobin2

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining & Technology, Xuzhou 221116, China

2. State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China

Abstract

The roadway of an abandoned mine is an ideal site for the construction of underground pumped storage hydropower, but the operation of the power station is deeply restricted by the structural characteristics of the roadway. With the common double-bend roadway of an abandoned mine as the research object, this study conducted numerical simulations based on the theory of mass conservation and momentum conservation and explored the law of the flow field characteristics and energy loss of a double-bend roadway with the roadway structure and angle. The results showed that a velocity gradient and a pressure gradient form from the outer wall to the inner wall when the fluid flows through the two bends of the roadway. The low-speed zone and maximum positive pressure appeared at the outside of the bend, while the high-speed zone and maximum negative pressure appeared at the inside of the bend. As the angle rose, the peak value of positive pressure increased correspondingly when the fluid flowed through Model A, whereas the negative pressure displayed a fluctuating trend of increasing first and then decreasing and reached its peak when β = 45°. By contrast, when the fluid flowed through Model B, the velocity gradient was symmetrically distributed at the two bends. The peak value of the positive pressure of the first bend increased, and the other positive and negative pressures displayed a trend of “first increasing and then decreasing” when the angle increased, and they reached their peak when β = 45°. When β ≥ 60°, the fluid formed a backflow zone when it flowed through each bend. With an increase in the angle, the area of the backflow zone increased correspondingly. The head loss of the two models increased with the angle. At the same angle, the head loss of Model B was greater than that of Model A. According to the requirement of abandoned mine pumped storage, the roadways with a bend angle of 15° or 30° in Model A and 15° in Model B can be used. The research results can provide some reference for the underground space exploitation and utilization of abandoned mine pumped storage.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference25 articles.

1. Waterpollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life;Sun;J. China Coal Soc.,2022

2. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system;Sun;Coal Geol. Explor.,2021

3. Precision exploitation and utilization of closed/abandoned mine resources in China;Yuan;J. China Coal Soc.,2018

4. Prediction on the energy consumption and coal demand of China in 2025;Xie;J. China Coal Soc.,2019

5. Further discussion on the scientific problems and countermeasures in the utilization of abandoned mines;Yuan;J. China Coal Soc.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3