Climate Change Trends for the Urban Heat Island Intensities in Two Major Portuguese Cities

Author:

Andrade Cristina123ORCID,Fonseca André234ORCID,Santos João A.234ORCID

Affiliation:

1. Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal

2. Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal

3. Institute for Innovation, Capacity Building, and Sustainability of Agrifood Production (Inov4Agro), 5000-801 Vila Real, Portugal

4. Department of Physics, School of Sciences and Technology, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5001-801 Vila Real, Portugal

Abstract

Urban Heat Island (UHI) intensities are analyzed for the metropolitan areas of the two major Portuguese cities, Lisbon and Porto, in the period 2008–2017. Projections for the UHI intensity averaged over 2008–2017 and a future period 2021–2050 are calculated under the Representative Concentration Pathway (RCP) 8.5. The spatiotemporal characteristics of the UHI intensity are assessed for daytime, nighttime, and average daily conditions. This analysis is carried out for the winter (Dec-Jan-Feb, DJF) and summer (Jun-Jul-Aug, JJA) meteorological seasons. Maximum UHI intensities of about 3.5 °C were reached in 2008–2017 in both metropolitan areas, but over a wider region during winter nighttime than during summer nighttime. Contrariwise, the most intense urban cool island effect reached −1.5 °C/−1 °C in Lisbon/Porto. These UHI intensities were depicted during summer daytime and in less urbanized areas. Overall, the UHI intensities were stronger during the winter than in the summer for both cities. Results show that the UHI intensity is closely related to underlying surfaces, as the strongest intensities are confined around the most urbanized areas in both cities. Until 2050, under RCP8.5, the highest statistically significant trends are projected for summer daytime, of about 0.25 °C (per year) for Lisbon and 0.3 °C (per year) for the UHI 99th percentile intensities in both metropolitan areas. Conversely, the lowest positive statistically significant trends (0.03 °C/0.02 °C per year) are found for the winter daytime UHI intensities in Lisbon and the winter nighttime and average UHI intensities in Porto, respectively. These statistically significant patterns (at a 5% significance level) are in line with the also statistically significant trends of summer mean and maximum temperatures in Portugal, under RCP8.5 until 2050. Scientists, urban planners, and policymakers face a significant challenge, as the contribution of urbanization and the forcing promoted by global warming should be duly understood to project more sustainable, go-green, carbon-neutral, and heat-resilient cities.

Funder

National Funds by FCT—Portuguese Foundation for Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference55 articles.

1. The energetic basis of the urban heat island;Oke;Q. J. R. Meteorol. Soc.,1982

2. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation;Oke;Boundary-Layer Meteorol.,1991

3. Maximum urban heat island intensity in Seoul;Kim;J. Appl. Meteorol.,2002

4. Past and projected trends in London s urban heat island;Wilby;Weather,2003

5. Spatial and Temporal Characteristics of Beijing Urban Heat Island Intensity;Yang;J. Appl. Meteorol. Clim.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3