Logistic Regression Model for a Bivariate Binomial Distribution with Applications in Baseball Data Analysis

Author:

Han Yewon,Kim JaehoORCID,Ng Hon Keung TonyORCID,Kim Seong W.ORCID

Abstract

There has been a considerable amount of literature on binomial regression models that utilize well-known link functions, such as logistic, probit, and complementary log-log functions. The conventional binomial model is focused only on a single parameter representing one probability of success. However, we often encounter data for which two different success probabilities are of interest simultaneously. For instance, there are several offensive measures in baseball to predict the future performance of batters. Under these circumstances, it would be meaningful to consider more than one success probability. In this article, we employ a bivariate binomial distribution that possesses two success probabilities to conduct a regression analysis with random effects being incorporated under a Bayesian framework. Major League Baseball data are analyzed to demonstrate our methodologies. Extensive simulation studies are conducted to investigate model performances.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SABeDM: a sliding adaptive beta distribution model for concept drift detection in a dynamic environment;Knowledge and Information Systems;2023-11-20

2. ShuttleSet: A Human-Annotated Stroke-Level Singles Dataset for Badminton Tactical Analysis;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

3. Determine the Undervalued US Major League Baseball Players with Machine Learning;International Journal of Innovative Technology and Exploring Engineering;2023-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3