Bilayer LDPC Codes Combined with Perturbed Decoding for MLC NAND Flash Memory

Author:

Kong Lingjun1ORCID,Liu Haiyang2ORCID,Hou Wentao3ORCID,Meng Chao1

Affiliation:

1. Faculty of Network and Telecommunication Engineering, Jinling Institute of Technology, Nanjing 211169, China

2. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

3. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

This paper presents a coding scheme based on bilayer low-density parity-check (LDPC) codes for multi-level cell (MLC) NAND flash memory. The main feature of the proposed scheme is that it exploits the asymmetric properties of an MLC flash channel and stores the extra parity-check bits in the lower page, which are activated only after the decoding failure of the upper page. To further improve the performance of the error correction, a perturbation process based on the genetic algorithm (GA) is incorporated into the decoding process of the proposed coding scheme, which can convert uncorrectable read sequences into error-correctable regions of the corresponding decoding space by introducing GA-trained noises. The perturbation decoding process is particularly efficient at low program-and-erase (P/E) cycle regions. The simulation results suggest that the proposed bilayer LDPC coding scheme can extend the lifetime of MLC NAND flash memory up to 10,000 P/E cycles. The proposed scheme can achieve a better balance between performance and complexity than traditional single LDPC coding schemes. All of these findings indicate that the proposed coding scheme is suitable for practical purposes in MLC NAND flash memory.

Funder

the Key Project of Basic Science (Natural Science) Research in Higher Education Institutions of Jiangsu Province

the NSFC

the JITSF

the Qing Lan Project in Jiangsu Province, and the Open Research Fund of National Mobile Communications ResearchLaboratory, Southeast University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3