An Integrated Strategy for Analyzing the Complete Complex Integrated Structure of Maize MON810 and Identification of an SNP in External Insertion Sequences

Author:

Huang Chunmeng123,Zhang Yongjun14ORCID,Yu Huilin123,Chen Xiuping123,Xie Jiajian123ORCID

Affiliation:

1. Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Key Laboratory of Safety Assessment of Genetically Modified Organisms (Environment), Ministry of Agriculture and Rural Affairs, Beijing 100193, China

3. Plant Ecological Environment Safety Inspection and Testing Center of Ministry of Agriculture and Rural Affairs (Beijing), Beijing 100193, China

4. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

Genetically modified maize (Zea mays L.) MON810 was approved for importation into China for feed use in 2004; however, the localization data concerning exogenous insertion sequences, which confer insect resistance, have been questionable. MON810 maize plants discovered in northeastern China were used to analyze the molecular characteristics of the exogenous insertion. Using PacBio-HiFi sequencing and PCR assays, we found the insertion was located in chromosome 8, and there was a CaMV35S promoter, hsp70 intron, and insecticide gene cry1Ab, except for genome sequence insertion in the MON810 event. Importantly, the 5′ and 3′ flanking sequences were located in the region of 55869747–55879326 and 68416240–68419152 on chromosome 5, respectively. The results of this study correct previous results on the genomic localization of the insertion structure for the MON810 event. We also found a single-nucleotide polymorphism (SNP) in the hsp70 intron, which is most likely the first SNP found in a transgenic insertion sequence. PCR amplification in conjunction with Sanger sequencing, allele-specific PCR (AS-PCR), and blocker displacement amplification (BDA) assays were all effective at detecting the base variance. The integrated strategy used in this study can serve as a model for other cases when facing similar challenges involving partially characterized genetic modification events or SNPs.

Funder

Biological Breeding-Major Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3