The Influence of the Explant’s Type on the Performance of Synthetic Seeds of Blackberry (Rubus spp.)

Author:

Regni Luca1ORCID,Micheli Maurizio1ORCID,Facchin Simona Lucia1,Del Pino Alberto Marco1ORCID,Silvestri Cristian2ORCID,Proietti Primo1ORCID

Affiliation:

1. Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy

2. Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy

Abstract

In vitro propagation, also known as micropropagation, has become the most widely employed method for blackberry propagation, as it overcomes the limitations of the traditional asexual propagation methods (mainly layering and cutting). In this context, synthetic seed technology represents a strategy to enhance the productivity of in vitro propagation and facilitates the exchange of plant materials between laboratories, contributing to germplasm conservation. This study aimed to identify the most suitable vegetative propagule for the encapsulation of blackberry. To this end, uninodal microcuttings (nodes) and the base of clumps were used to produce synthetic seeds for the cultivars Thornfree and Chester. Forty-five days after sowing, viability (percentage of green propagules without browning or necrosis), regeneration (percentage of propagules that sprouted and rooted simultaneously), number of shoots produced, shoot length, number of roots produced, root length, and the fresh and dry weights of the plantlets were measured. The results demonstrated that both considered propagules allowed us to obtain satisfactory regeneration rates. However, plantlets originating from the encapsulated clump’s base had more shoots and roots, resulting in greater fresh and dry weights than the plantlets derived from encapsulated nodes. Therefore, for achieving more robust plantlets and enhancing overall procedural efficiency, we recommend using the base of clumps as a propagule for blackberry encapsulation.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3