Genome-Wide Analysis of Polygalacturonase Gene Family Reveals Its Role in Strawberry Softening

Author:

Zhao Mantong1,Hu Ruixin1,Lin Yuanxiu1ORCID,Yang Yeqiao1,Chen Qing1ORCID,Li Mengyao1ORCID,Zhang Yong1ORCID,Zhang Yunting1,Wang Yan1ORCID,He Wen1,Wang Xiaorong1ORCID,Tang Haoru1ORCID,Luo Ya1

Affiliation:

1. College of Horticulture, Sichuan Agricultural University, Chengdu 625014, China

Abstract

Fruit softening is a prominent attribute governing both longevity on shelves and commercial worth. Polygalacturonase (PG) plays a major role in strawberry fruit softening. However, the PG gene family in strawberry has not been comprehensively analyzed. In this study, 75 FaPG genes were identified in the octoploid strawberry genome, which were classified into three groups according to phylogenetic analysis. Subcellular localization prediction indicated that FaPGs are mostly localized to the plasma membrane, cytoplasm, and chloroplasts. Moreover, the expression of FaPGs during strawberry development and ripening of ‘Benihoppe’ and its softer mutant was estimated. The results showed that among all 75 FaPGs, most genes exhibited low expression across developmental stages, while two group c members (FxaC_21g15770 and FxaC_20g05360) and one group b member, FxaC_19g05040, displayed relatively higher and gradual increases in their expression trends during strawberry ripening and softening. FxaC_21g15770 was selected for subsequent silencing to validate its role in strawberry softening due to the fact that it exhibited the highest and most changed expression level across different developmental stages in ‘Benihoppe’ and its mutant. Silencing FxaC_21g15770 could significantly improve strawberry fruit firmness without affecting fruit color, soluble solids, cellulose, and hemicellulose. Conversely, silencing FxaC_21g15770 could significantly suppress the expression of other genes related to pectin degradation such as FaPG-like, FaPL, FaPME, FaCX, FaCel, FaGlu, FaXET, and FaEG. These findings provide basic information on the FaPG gene family for further functional research and indicate that FxaC_21g15770 plays a vital role in strawberry fruit softening.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Key R&D Project of Science and Technology Department of Sichuan Province

Sichuan Tianfu New Area Rural Revitalization Research Institute

2023 Provincial College Students’ Innovation and Entrepreneurship Training Program of Sichuan Agricultural University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3