Physiological Analysis of Source–Sink Relationship in Rice Genotypes with Contrasting Grain Yields

Author:

Vishwakarma Chandrapal12,Krishna Gopinathan Kumar3ORCID,Kapoor Riti Thapar2,Mathur Komal2,Dalal Monika4,Singh Nagendra Kumar4,Mohapatra Trilochan5,Chinnusamy Viswanathan1

Affiliation:

1. Division of Plant Physiology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (IARI), New Delhi 110012, India

2. Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, Uttar Pradesh, India

3. Department of Plant Physiology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur 680656, Kerala, India

4. Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi 110012, India

5. Protection of Plant Varieties and Farmers’ Rights Authority, New Delhi 110012, India

Abstract

Rice is a major staple food, and, hence, doubling its productivity is critical to sustain future food security. Improving photosynthesis, source–sink relationships and grain-filling mechanisms are promising traits for improvement in grain yield. To understand the source–sink relationship and grain yield, a set of contrasting rice genotypes differing in yield and biomass were studied for physiological, biochemical and gene-expression differences. The physiological and yield component traits of selected rice genotypes were analyzed in 2016 and 2017 under field conditions. This led to the categorization of genotypes as high yielding (HY) and high biomass, viz., Dular, Gontra Bidhan 3, Way Rarem, Patchai Perumal, Sahbhagi Dhan, Indira Barani Dhan-1, MTU1010, and Maudamani; while, low yielding (LY) and low biomass, viz. Anjali, Ghanteswari, Parijat, Khao Daw Tai, RKVY-104, Ghati Kamma Nangarhar, BAM4510 and BAM5850. The HY genotypes in general had relatively better values of yield component traits, higher photosynthetic rate (Pn) and chlorophyll (Chl) content. The study revealed that leaf area per plant and whole plant photosynthesis are the key traits contributing to high biomass production. We selected two good-performing (Sahbhagi Dhan and Maudamani) and two poor-performing (Ghanteswari and Parijat) rice genotypes for a detailed expression analysis of selected genes involved in photosynthesis, sucrose synthesis, transport, and starch synthesis in the leaf and starch metabolism in grain. Some of the HY genotypes had a relatively high level of expression of key photosynthesis genes, such as RbcS, RCA, FBPase, and ZEP over LY genotypes. This study suggests that traits, such as leaf area, photosynthesis and grain number, contribute to high grain yield in rice. These good-performing genotypes can be used as a donor in a breeding program aimed at high yields in rice.

Funder

Indian Council of Agricultural Research

Division of Plant Physiology, (ICAR-Indian Agricultural Research Institute), Pusa Campus, New Delhi

National Agricultural Higher Education Project (NAHEP), Indian Council of Agricultural Research (ICAR), New Delhi

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3