Two Carya Species, Carya hunanensis and Carya illinoinensis, Used as Rootstocks Point to Improvements in the Heat Resistance of Carya cathayensis

Author:

Huang Shanxia1,Xu Yanxia1ORCID,Li Xueqin1,Ye Boyu1,Jin Songheng1ORCID

Affiliation:

1. Jiyang College, Zhejiang A&F University, Zhuji 311800, China

Abstract

Grafting as a crucial horticultural technique has been widely used in the cultivation of Carya cathayensis (Chinese hickory), which is a unique and important economic tree in the northeast of Zhejiang Province and the south of Anhui Province. However, the existing literature lacks research on the potential impact of various rootstocks on the thermal tolerance of Chinese hickory. The objectives of this study were to evaluate heat tolerance in four distinct groups of Chinese hickory, including C. cathayensis grafted onto Carya hunanensis and Carya illinoinensis, one self-grafted group (C. cathayensis grafted onto C. cathayensis), and one non-grafted group (C. cathayensis). We examined photosynthesis parameters, phytohormones, and differentially expressed genes in the four various hickory groups subjected to 25 °C, 35 °C, and 40 °C heat stress (HS). The results demonstrated that grafting onto C. hunanensis and C. illinoinensis exhibited a higher net photosynthetic rate and stomatal conductance, lower intercellular CO2 concentration, and smaller changes in plant hormone content compared to self-grafted and non-grafted group under HS. The transcriptome results revealed that the majority of differentially expressed genes (DEGs) associated with photosynthetic pathways exhibited downregulation under HS, while the degree of variation in grafted groups using C. hunanensis and C. illinoinensis as rootstocks was comparatively lower than that observed in self-grafted and non-grafted groups. The alteration in the expression patterns of DEGs involved in plant hormone synthesis and metabolism under HS corresponded to changes in plant hormone contents. Overall, Chinese hickory grafted onto C. hunanensis and C. illinoinensis exhibited enhanced resistance to high-temperature stress at the juvenile stage.

Funder

the National Key Research and Development Project

the National Natural Science Foundation of China

the Zhejiang Provincial Natural Science Foundation of China

the Shaoxing “Hometown of Celebrities” Talent Program, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3