Combined Metabolomics and Network Pharmacology Analysis Reveal the Effect of Rootstocks on Anthocyanins, Lipids, and Potential Pharmacological Ingredients of Tarroco Blood Orange (Citrus sinensis L. Osbeck)

Author:

Yang Lei12ORCID,Li Shuang12ORCID,Chen Yang23ORCID,Wang Min12ORCID,Yu Jianjun12,Bai Wenqin23,Hong Lin12

Affiliation:

1. Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China

2. Key Laboratory of Evaluation and Utilization for Special Crops Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs, Chongqing 401329, China

3. Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China

Abstract

The benefits of citrus fruits are strongly associated with their secondary metabolites. In this study, we conducted widely targeted metabolomics analyses to compare the variability of the ingredients in four scion–rootstock combinations. A total of 376 differential metabolites were obtained by a multivariate statistical analysis, and a KEGG pathway analysis showed that the enriched metabolic pathways were mainly related to the biosynthesis of flavonoids as well as lipid metabolism. The anthocyanin-targeted metabolomic features showed that cyanidin 3-O-glucoside, cyanidin 3-O-(6-O-malonyl-beta-D-glucoside), cyanidin 3-O-sophoroside, and cyanidin 3-O-xyloside were the pigments responsible for the red color of Tarocco. A lipid metabolomics analysis revealed that when Tarocco was hetero-grafted with rootstock H, there was an increase in the content of each lipid subclass, accompanied by an increase in the levels of unsaturated fatty acids, including polyunsaturated linoleic and linolenic acids, thus impacting the ratio of unsaturated fatty acids to saturated fatty acids. Additionally, we determined their antioxidant capacity (‘Trifoliate orange’ (Z) > ‘Citrange’ (ZC) > ‘Hongju’ (H) > ‘Ziyang Xiangcheng’ (X)) using in vitro assays. Finally, we utilized a network pharmacology analysis to explore the antioxidant mechanisms and potential pharmacological ingredients; we obtained 26 core targets proteins and 42 core metabolites associated with oxidative damage, providing a basis for future preventive and therapeutic applications of these metabolites.

Funder

Special Funds for Agricultural Development of Chongqing

Chongqing Academy of Agricultural Sciences Performance Incentive Guide Project

Chongqing Academy of Agricultural Sciences Core Key Technology Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3