Effect of Glycolipids Application Combined with Nitrogen Fertilizer Reduction on Maize Nitrogen Use Efficiency and Yield

Author:

Meng Xianghai1,Dong Qingshan1,Wang Baicheng1,Ni Zheng2,Zhang Xingzhe1,Liu Chunguang1,Yu Wenquan1,Liu Jie3,Shi Xinrui1,Xu Dehai1,Duan Yan2ORCID

Affiliation:

1. Mudanjiang Branch, Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China

2. The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

3. Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin 150086, China

Abstract

Microbial-driven N turnover is important in regulating N fertilizer use efficiency through the secretion of metabolites like glycolipids. Currently, our understanding of the potential of glycolipids to partially reduce N fertilizer use and the effects of glycolipids on crop yield and N use efficiency is still limited. Here, a three-year in situ field experiment was conducted with seven treatments: no fertilization (CK); chemical N, phosphorus and potassium (NPK); NPK plus glycolipids (N+PKT); and PK plus glycolipids with 10% (0.9 N+PKT), 20% (0.8 N+PKT), 30% (0.7 N+PKT), and 100% (PKT) N reduction. Compared with NPK, glycolipids with 0–20% N reduction did not significantly reduce maize yields, and also increased N uptake by 6.26–11.07%, but no significant changes in grain or straw N uptake. The N resorption efficiency under 0.9 N+PKT was significantly greater than that under NPK, while the apparent utilization rates of N fertilizer and partial factor productivity of N under 0.9 N+PKT were significantly greater than those under NPK. Although 0.9 N+PKT led to additional labor and input costs, compared with NPK, it had a greater net economic benefit. Our study demonstrates the potential for using glycolipids in agroecosystem management and provides theoretical support for optimizing fertilization strategies.

Funder

National Key Research and Development Program of China

Research Expenses of Provincial Research Institutes of Heilongjiang Province

Heilongjiang Agricultural Science and Technology Innovation Leapfrog Project Agricultural Science and Technology Innovation Key Project

President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3