Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases

Author:

Fati Suliman MohamedORCID,Senan Ebrahim MohammedORCID,Azar Ahmad TaherORCID

Abstract

Every year, nearly two million people die as a result of gastrointestinal (GI) disorders. Lower gastrointestinal tract tumors are one of the leading causes of death worldwide. Thus, early detection of the type of tumor is of great importance in the survival of patients. Additionally, removing benign tumors in their early stages has more risks than benefits. Video endoscopy technology is essential for imaging the GI tract and identifying disorders such as bleeding, ulcers, polyps, and malignant tumors. Videography generates 5000 frames, which require extensive analysis and take a long time to follow all frames. Thus, artificial intelligence techniques, which have a higher ability to diagnose and assist physicians in making accurate diagnostic decisions, solve these challenges. In this study, many multi-methodologies were developed, where the work was divided into four proposed systems; each system has more than one diagnostic method. The first proposed system utilizes artificial neural networks (ANN) and feed-forward neural networks (FFNN) algorithms based on extracting hybrid features by three algorithms: local binary pattern (LBP), gray level co-occurrence matrix (GLCM), and fuzzy color histogram (FCH) algorithms. The second proposed system uses pre-trained CNN models which are the GoogLeNet and AlexNet based on the extraction of deep feature maps and their classification with high accuracy. The third proposed method uses hybrid techniques consisting of two blocks: the first block of CNN models (GoogLeNet and AlexNet) to extract feature maps; the second block is the support vector machine (SVM) algorithm for classifying deep feature maps. The fourth proposed system uses ANN and FFNN based on the hybrid features between CNN models (GoogLeNet and AlexNet) and LBP, GLCM and FCH algorithms. All the proposed systems achieved superior results in diagnosing endoscopic images for the early detection of lower gastrointestinal diseases. All systems produced promising results; the FFNN classifier based on the hybrid features extracted by GoogLeNet, LBP, GLCM and FCH achieved an accuracy of 99.3%, precision of 99.2%, sensitivity of 99%, specificity of 100%, and AUC of 99.87%.

Funder

Prince Sultan University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3