A Novel Fabrication of Spherical Fe50ni50 Alloy Powders via in-Situ De-Wetting of Liquid Solid Interface

Author:

Song ,Lei ,Zhong

Abstract

: Spherical Fe50Ni50 alloy powders were fabricated via a novel route based on in-situ interface de-wetting between liquid Fe-Ni alloy and alumina. The obtained Fe50Ni50 alloy particles exhibit very good spherical shape according to SEM images. Furthermore, the cross-sectional SEM images show that there are no pores and bulk inclusions in the internal region of the spherical particles. The XRD results show a trace amount of the impurity alumina phase appearing in taenite phase. The size distribution agreed well with the SEM observation confirms that the alumina powders successfully segregated pre-alloy powders. As an incidental benefit, the surface alumina particles were treated as the electrical insulation coatings. The magnetic character shows that spherical Fe50Ni50 powders exhibit a good soft magnetic property even though with a slightly decreasing of saturation magnetization due to non-magnetic coatings. Our strategies provide a method to in-situ fabricate insulation coated Fe-Ni spherical alloy powders as magnetic powder core.

Funder

Industrial Innovation of Applied Fundamental Research

National Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3