The Spatial Variation Mechanism of Size, Velocity, and the Landing Angle of Throughfall Droplets under Maize Canopy

Author:

Zhu ZhongruiORCID,Zhu Delan,Ge Maosheng

Abstract

Larger diameter and velocity and smaller landing angle of sprinkler irrigation droplets are more likely to cause soil splash and erosion. However, the mechanism of crop canopy influence on the physical parameters of sprinkler droplets is unknown. In this study, with the landing angle of sprinkler irrigation droplets as the independent variable and maize plants (Zea mays L.) as the research object, an indoor sprinkler irrigation experiment was carried out. The effects of maize canopy and variation in sprinkler irrigation droplets landing angle on the value and spatial distribution pattern of size, the velocity, and the landing angle of throughfall droplets was analyzed. In addition, the spatial variation patterns of throughfall droplets size, velocities’ distribution, and individual droplet’s speed, kinetic energy were also explored. The results showed that maize canopy and the decreasing of the sprinkler irrigation droplet landing angle had a positive and obvious effect on reducing the size and velocity of penetrating rain droplets. However, the throughfall droplets’ landing angles were only small variations. When the landing angle of sprinkler irrigation droplets was >45°, the spatial distribution of throughfall droplets size and velocity corresponded well with the canopy structure and leaf projection area of maize, i.e., the further away from the maize stalk, the larger the size and velocity of throughfall droplets. Nevertheless, if the landing angle of sprinkler irrigation droplets was <45°, the spatial distribution mentioned above was mainly affected by droplets landing angle. The spatial variation of throughfall droplets’ size and velocities at different measurement points was attributed to the change of the larger droplets’ volume proportion and the equivalent velocity. Although the maize leaves had a certain degree of perturbation effect on the velocities and kinetic energy of the larger kinetic energy droplets, the flight path of these drops did not alter significantly. The results of this research will be of practical value in guiding the development of a new sprayer and the optimum selection of sprinkler heads.

Funder

the key Research and Development Plan of Shaanxi Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3